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The transfer of entanglement from optical fields to qubits provides a viable approach to entangling remote
qubits in a quantum network. In cavity quantum electrodynamics, the scheme relies on the interaction between a
photonic resource and two stationary intracavity atomic qubits. However, it might be hard in practice to trap two
atoms simultaneously and synchronize their coupling to the cavities. To address this point, we propose and study
entanglement transfer from cavities driven by an entangled external field to controlled flying qubits. We consider
two exemplary non-Gaussian driving fields: NOON and entangled coherent states. We show that in the limit of
long coherence time of the cavity fields, when the dynamics is approximately unitary, entanglement is transferred
from the driving field to two atomic qubits that cross the cavities. On the other hand, a dissipation-dominated
dynamics leads to very weakly quantum-correlated atomic systems, as witnessed by vanishing quantum discord.
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I. INTRODUCTION

Entanglement is an invaluable resource for many important
tasks in quantum information processing [1-5], including
metrological purposes [6,7]. Schemes for the generation
and distribution of entanglement have been designed and
implemented, in the past 20 years, in a number of physical
systems. The quality of these strategies has considerably
increased over recent years, making the creation of multipartite
entangled states of a few elements a reality [8—10] and paving
the way to the near-future realization of networks of distributed
quantum nodes for quantum communication and computing
[5]. The main challenge, in this context, is the achievement
of reliable interfaces between information carriers having
different natures.

This problem has long been investigated, both theoretically
and experimentally, and various solutions for the achievement
of controllable interactions between static local processors and
flying information carriers have been designed [5]. Among
them, a promising one for its technologically realistic nature
and its flexibility is embodied by the transfer of quantum
correlations from light to matterlike systems [11-17]. Broadly
speaking, this paradigm for entanglement distribution via
light-matter interfaces requires the availability of entangled-
light resources and the ability to perform local light-matter
interactions that pass the quantum correlations (or part of
them) to initially separable local matterlike systems. Originally
devised for cavity and circuit QED settings [11-13], this
approach has recently been extended to mechanical systems
interfaced to light [18] and quantum many-body systems [19].

In most of the above-mentioned schemes based on cavity-
QED technology, it has been assumed that multilevel atoms are
located at a fixed point within a cavity, where they are coupled
to an antinode of the cavity-field standing wave. In the actual
situation, the atoms are either flying through a cavity [20]
or trapped within an intracavity optical dipole trap, yet still
moving within it [21]. Current records for atomic optical
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traps reach trapping times as long as 30 s [22]. However,
the management of a network of single atoms trapped in
distant cavities embodies a considerable challenge. Moreover,
although efficient ways to switch the cavity-atom interaction
exist, such a configuration makes it hard to arrest the evolution
of the interatom entanglement so as to achieve a desired
value.

In this paper, we propose a simple strategy to bypass both
such difficulties. We study entanglement transfer to two flying
atomic qubits crossing two remote cavities that are driven
by an entangled resource. The scheme relies on the high
level of synchronization that can be arranged for the passage
of two different atoms across remote cavities. Moreover, as
the light-atom interaction is turned off after the atoms exit
the cavities, it is possible to arrange for steady-state atomic
entanglement.

As entangled resources, we consider both NOON states
and entangled coherent states [23] (ECSs), which are im-
portant non-Gaussian resources of experimental relevance
(five-photon NOON states have been produced recently [24],
while ECSs with an amplitude of about one photon can be
produced, using a beam splitter, from the coherent super-
positions of coherent states described in Ref. [25]). Both
classes of states have broad prospective applications in either
quantum metrology [26] or fundamental research [27]. We
study the efficiency of the entanglement-transfer scheme in
various dynamical regimes, highlighting the effectiveness of
steady-state entanglement distribution in the quasicoherent
case corresponding to the good-cavity limit, while stating a
no-go result for the regime dominated by cavity dissipation.

The remainder of the paper is structured as follows. In
Sec. I we describe the system we address and describe the
preparation of the entangled cavity fields. Section 11l is devoted
to the analysis of the relative performance of the scheme
under the two classes of entangled resources. In Sec. IV
we address the dissipation-dominated dynamics, showing the
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FIG. 1. (Color online) Scheme of the protocol: Two remote and
identical cavities are driven by a two-mode quantum correlated field,
which is coupled to each cavity via a leaky mirror. Two qubits are then
sent to pass simultaneously through the cavities along the vertical (x)
direction from the tops of the geometrical centers.

impossibility of entanglement transfer. Finally, we draw our
conclusions in Sec. V.

II. THE MODEL

Let us introduce here the scheme that we address in this
work, which is shown in Fig. 1. Two freely propagating field
modes, labeled in the following a and b, drive two remote
single-mode cavities, which we call A and B, respectively.
The state of the driving fields will be specified, when needed,
later on. The cavities are prepared in their vacuum state.
The coupling between each external driving field and the
corresponding cavity is modeled as a beam splitter (BS)
with transmittivity (reflectivity) T (R =1 — T) [28] that is
quantitatively determined by the quality factor of each cavity
[13]. The state of the cavity modes that result from the driving
process is given by

pa5(0) = Trap[Baa By papas©0)Bl Bl 1. (1)

where B 4q and B pp are the BS operators. As a result, in
general, the cavity fields become entangled. Two two-level
atoms (qubits) with energy eigenstates |0); and |1); (i = 1,2)
and Bohr frequencies equal to the frequency of the cavity fields
pass through their respective cavities. Here we consider two
cases: (a) the simultaneous free-falling of the atoms across the
cavity (i.e., the qubits are accelerated by gravity) [20]; (b) the
constant-speed passage of the atoms, which can be realized
experimentally by embedding an optical lattice loaded with a
single atom into the cavity [22,29] or using optical traps for
atomic confinement and transport. For short time intervals, the
coupling strength between each atom and the corresponding
cavity field can be considered as a constant, and the local qubit-
field interaction can be treated through the standard (resonant)
Jaynes-Cummings (JC) model that reads, in the interaction
picture with respect to the free energy of qubits and cavities, as
Hiji, (1) = hS2(x (1), y())(k;|1); (0] + k;|0)j<1 ) (with j = 1,2
and k; = Ak, = B). Here, Q(x(t),y(t)) is the qubit-field
coupling frequency, which depends on the position of an atom
within the respective cavity and the form of the field mode. As
a simplifying assumption that does not affect the generality of
our analysis, we consider the atoms falling perfectly vertically.
This means assuming y = 0 in our model (we take the origin of
each reference frame at the geometrical center of the respective
cavity). For a transverse Hermite-Gauss mode, €2(x(#),0) takes
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the form [30]

| Wy, (x(1),0)]

(0,00 = o=y, " 0.0

, 2

where €2 is a constant and ¥, ,(x(¢),0) is the mode function
of the cavity,

2x(t
W, (x(0),0) = €, ye ™ 0/ H(m) 3)
o
Here, we have introduced the coefficient C; ,IJ =

(2”2”u!v!)1/2(w(2)71/2)1/2, while H,(x) is the Hermite
polynomial of order p and argument x. The waist wq of each
field mode is determined by the radius of curvature of the
mirrors and the cavity length [20].

Let us first assess the unitary dynamics resulting from
neglecting any source of noise and losses. The associated uni-
tary operator is 012A3(t) = 01A(t) ® Uzg(t), where Ujkj (t) =
exp[—i fot I:Ijk/. (t")dt' /h]. The dynamics of the two flying
qubits is, however, nonunitary and described by the reduced
density matrix

p12(t) = Trap[Ui2ap()p12(0) ® panO)U 5,501 (4)

In order to fix the ideas, we assume that the qubits are
initialized in |00}, (00|, which is usually the preparation for
which the entanglement-transfer process is optimized [31].

As for the entangled resource, in this paper we will concen-
trate on two families of non-Gaussian states of experimental
significance, namely, the NOON and ECS families. The first
family is described as

L
V2

while the ECS representative that will be used in our study is

INOON)sp = —=(INO)ap + |0N)ap)(N € N), ®)

[ECS) 4y = Na(lot0)yp, + 10ct)p), (6)

where N, = [2(1 —i—e"‘)“z)]’l/2 is the state normalization.
In what follows, we study quantitatively the entanglement-
transfer scheme performed using each of such states.

III. PERFORMANCE OF THE
ENTANGLEMENT-TRANSFER PROCESS

Let us begin with the NOON family, so that the initial state
of the pump-cavity system is [NOON),,®|00) 45. The field
that is thus prepared within the cavities is [32]

L (N gvemon
pas = 52()(,”)1%” T" (|m0) a5 ¢mO| + 10m) a (Om|)

TN
+ 7(|NO>AB<0N| + |0N) a5 (NOJ). (7

An interesting point that will be reprised and explained later
on in this paper is that for N > 1 the off-diagonal elements
of the two-qubit density matrix are all exactly null, so that
no entanglement is transferred. On the other hand, for N = 1,
the evolved atomic state takes the form (in the ordered basis
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{I11),110),101),100)}12)

0 0 0 0
o sz 152 0
Pe®=1\o 752 752 0 | (®)
0O 0 0 1-TS

where S = sin?[u(f)] and u(t) = fot Q(x(t"),0)dt’. 1t should
be noted that the impossibility of entanglement transfer for
N > 1 is not related to the fact that a single-photon entangled
state violates a Clauser-Horne-Bell inequality more than any
other NOON state with N > 1[33] but to the intrinsic structure
of correlations in the resources at hand and the entanglement-
transfer process ruled by the JC model.

We now consider another state of the driving field, namely,
an entangled coherent state [23], which is known to offer
advantages over the NOON class. For instance, in some
cases ECSs show a remarkably improved sensitivity for phase
estimation as compared to that of the NOON states [34].
Such superiority, as we will see, does not extend to the
entanglement-transfer paradigm performed using the JC model
for the local atom-field interaction, as ECSs exhibit lower
entangling power than NOON states.

An observation that allows for the understanding of the
depleted entangling capacity of ECSs comes from realizing
that the latter can be seen as a superposition of NOON states
as [24,35]

ECS)p = Nae ™™ /ZZ Yap)- ()

It is straightforward to realize that the incommensurate nature
of the Rabi frequencies $2(x(¢),0)+/n at which entanglement is
transferred to each subspace spanned by {|n — 1,1}, |n,0)},
generates quantum interference effects. The result is that the
amount of entanglement effectively passed from the ECS
resource to the qubit receivers is less than what is achieved
using an entangled single-photon state. In order to see this,
we have quantified the entanglement between the flying qubits
(initially prepared in their ground state), after their interaction
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with the driven cavities. The reduced two-bit density matrix is

0 0 0 0
0 A B C

() = 0 B A C , (10)
0 C* C* 1-2A

with

Z O‘n— 2% VR T sin?[1u(r)v/n—m],

B = N?To? sin*[u(1)],
— —zNZ{Z«/_a sin[u(2)]

a2s+l Rm Tx—m+1/2

+Z Z ml/(s +1—m)!l(s —m)!

s=1 m=0

x sin[u(t)v's —m + 1] cos[u(t)v/s — m]}, (11D
Ny = Nye P2 and € = /nT]Im1n — m)1].

In order to quantify the qubit entanglement, in the remainder
of this paper we use the negativity of p,(¢) [36],
Nlpia()] = max[0, — 24_(1)], 12)

where A_(t) is the smallest eigenvalue (with its sign) of the
partially transposed two-qubit density matrix.

A. Discussion of the results

The behavior of the qubit entanglement under a NOON
and an ECS driving and a perfectly unitary dynamics is
shown in Figs. 2(a) and 2(b) and 3(a) and 3(b), respectively.
Clearly, a single-photon entangled state is able to prepare a
sizably entangled qubit state depending on the value of the
frequency 2. If the latter is such that the atoms perform an
odd half-integer (integer) number of Rabi floppings by the
time they cross the field modes, the flying qubits leave the
cavities with a significant degree of steady-state entanglement
(in a separable state), regardless of the motion (whether at
constant velocity or accelerated) that they underwent within
the resonators [cf. Figs. 2(a) and 2(b)]. The working conditions
of the process can be adjusted so that the values of the
steady-state entanglement achieved in the two instances of

(a) (b)
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0.4 |
02
0.002 0.004 0.006 0.008 0.02  0.04

(c)
N(p12)
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0.6
0.4
02
t(s) t(s)
0.06  0.08 0.001_0.002 0.003 0.004 0.005

FIG. 2. (Color online) (a) Entanglement transfer for free-falling atoms and a single-photon entangled driving field (i.e., NOON states

with N = 1), x(t) = xo + gt*/2, where xy =

—4dwy, g =9.82 m/s?

, and for Qy = 4 kHz (dashed line) and 29 = 5.9 kHz (solid line).
(b) Entanglement of atomic qubits crossing the cavities under conditions of uniform motion [x(#) = xo + V¢ with xy =

—4wy and V = 0.001

m/s] and with the same driving field used in (a). We have taken Qo = 155 Hz (dashed line) and €2y, = 365 Hz (solid line). (¢) Comparison
between the unitary (solid line) and dissipation-affected (dashed line) entanglement-transfer performance for free-falling motion of the atomic
qubits with €, = 5.9 kHz. In the dissipation-affected simulation, we have taken €,/ I" 2~ 102. In all our calculations we have taken the cavity

mode W, o(x,0) (i.e., the TEMjy, mode), wy =

10 um, and 7' = 0.9, and the qubits are prepared in |00),.
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FIG. 3. (Color online) (a) Entanglement transfer for free-falling atoms and ECS external driving with xo = —4wy, @ = 1.1, and Q2 =
6.1 kHz. (b) Entanglement for atomic qubits crossing the cavities under uniform motion (xo = —4wy, V = 0.005 m/s) and €2y = 850 Hz, under

the same driving as in (a). The atomic steady-state entanglement at the exit of the cavities for both motions is comparable. (¢) Comparison
between the unitary (solid line) and dissipation-affected (dashed line) entanglement-transfer behavior for uniform motion of the atomic qubits
(V = 0.005 m/s), Q = 340 Hz, and « = 0.9. We have taken /" 2~ 10%. For all plots, we take the cavity mode W, o(x,0), wp = 30 pum,

T = 0.9, and initial atomic ground state.

atomic motion are comparable (cf. Fig. 2). Needless to say, for
free-falling qubits, a Rabi frequency much larger than the one
that should be chosen under conditions of constant velocity
is required, as the interaction time between atoms and cavity
fields is shortened. As anticipated, the use of an ECS driving
does not result in an equally effective transfer efficiency.
Figures 3(a) and 3(b) show the negativity for both free-falling
and constant-velocity qubits, optimized numerically over the
parameters of the interaction and the amplitude of the ECS
state (at =~ 1.1 the entanglement between the flying qubits
is maximum, uniformly with respect to the choice of the other
parameters of the model).

As seen from the analysis above, interaction times of the
order of 1073 (for accelerated qubits) or 1072 (for atoms
moving at constant velocity) are needed in order to cross the
cavities. These values of the interaction time might put the
dynamics of the system well within the typical time scale
of leakage of the cavity fields due to finite cavity quality
factors. Therefore, in order to make our analysis consistent
with a realistic experimental situation, we should abandon
the perfectly unitary description adopted so far in favor of
an open-system dynamics that includes the effect of field
dissipation. This is done, in what follows, by implementing
a quantum Monte Carlo unraveling of the system’s dynamics
[37] implemented by letting the system evolve through the
non-Hermitian operator

2
()= Hy,(t) - irléjléj (ki = Ako = B) (13)
j=1

with I' the damping rate of each field (assumed to be the same
for both the cavities, an assumption that can be easily relaxed
if needed) and considering the effects of the quantum jump
operators ~/Tk ;- The results of our numerical simulations of
a large number of possible dynamical histories of the system
are presented in Figs. 2(c) and 3(c) for max, Q(x(¢),0)/ " ~
102, which is a regime that can be achieved experimentally
[20,38] [in Fig. 3(c) we address the suboptimal case of « = 0.9
simply for convenience of calculations in light of the size of the
truncated Hilbert space within which we have performed our
quantum-jump calculations]. The process shows a noticeable

robustness to the effects of field damping, leaving the qubits
at the output of the cavities well entangled, irrespective of the
details of the atomic motion and the form of the driving field.

IV. IMPOSSIBILITY OF ENTANGLEMENT TRANSFER
IN DISSIPATION-DOMINATED REGIMES

Here we address the case of a dissipation-dominated dy-
namics of the cavity fields to demonstrate that no entanglement
can be transferred in this case, regardless of the flying
or trapped nature of the atomic qubits. Moreover, besides
determining the regime for effective entanglement transfer,
this approach will help us understanding some of the results
that have been gathered in the previous sections. Let us start
by introducing damping of the cavity fields into the dynamical
evolution of the system, which will now be ruled by the master
equation

dp1248 = —i|: Z I:Ijk,-vplZAB] + Z Lj(p1245)

j=12 j=A.B
= (Lo + L) (p1aan) (14)

with p24 5 the density matrix of the whole cavity-qubit system
and (j = A,B)

Li(o)=TQjojl - jljo —aji}), (15)

which is the Liouvillian describing the damping of each cavity
field due to a low-temperature bath (as is typical at optical
frequencies) and acts on a generic density matrix o. We now
assume I' > |Q(x,y)]|, i.e., the bad-cavity limit, and trace
out the cavity fields, so as to find an effective dissipative
dynamical map for the qubits only, driven by a structured
quantum environment that exhibits quantum correlations.
Such an effective description is gathered following standard
strategies for the derivation of adiabatically eliminated master
equations [39] as

o0 A A oo
0012 = Trap {50/ e“ Lo(pp ® mz)dl} , (16)
0

which has been obtained by defining a projection operator P
such that P24 = 0’5 ® p12 with o3, the steady state of the
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cavity fields and pj, the reduced density matrix of the atoms
only. The projection operator is such that 75£A075p12A g =0,
which is a key property for the derivation of Eq. (16). In
Ref. [12], it has been shown that the explicit form of the
reduced master equation depends on a Kossakowski matrix that
is fully determined just by the second moments of the environ-
mental modes. We introduce the covariance matrix M(pap)
with elements M;;(pap) = Tr[pAB{qi,@j}/Z], where § =
(X4 pa Xp pp) is the row vector of the two-mode field quadra-
tures. Any two-mode covariance matrix can be transformed,
by means of local symplectic operations, into the form [40]

n (4
)

where p = pl, (p = n,m) account for the variances of each
local mode and ¢ = diag[c;,c,] describes the intermode cor-
relations. In our formalism, the two-mode vacuum state corre-
spondston = m = 1/2withc; » = 0.For a generic covariance
matrix M, the Kossakowski matrix that fully determines the
dynamics of the two-atom system can be constructed as

n+iXx c
K—V< ¢ m+i¥

a7

):MJH'E@2 (18)
with ¥ o [Q(x,y)|?/ T the effective two-qubit coupling rate
and ¥ = (Y ) the single-mode symplectic matrix [12,16].
The reduced dynamics of the atoms is thus built as
4
0 p12 = Z Ko5(0up120p — {05 04,012}/2),
o,f=1

19)

where O, =6!®1 for « =1,2 and O, =1® 62 , for
o = 3,4. Here, 61’(2) is the x (y) Pauli matrix of qubit
j = 1,2. Complete positivity of the map originating from
Eq. (19) is ensured for K > 0, which is equivalent to the
Heisenberg-Robertson uncertainty principle for the covariance
matrix M [39]. In what follows, we will consider both the
temporally resolved two-atom dynamics achieved by solving
Eq. (19) and the steady-state one obtained by setting 9, 0;» = 0.

We start with the NOON driving field. Upon explicit calcu-
lation, it is straightforward to check that M (pnoon) = (N +
1/2 forany N > 1 (here, pnoon = INOON) (NOON]). This
simply implies that all the correlations in a NOON state with
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more than one photon are encoded in higher-order moments of
the mode quadratures. As the process of entanglement transfer
ruled by the interaction Hamiltonian Hi s+ 1:12 g relies on the
second moments only, a point that has been duly stressed in
Ref. [17], it is clear that such a driving field does not embody
a useful resource for the process, regardless of the dependence
of the coupling strength Q(x,y) on the details of the atomic
transition across the cavities. In turn, this provides a rigorous
explanation of the observations made earlier for the case of
unitary dynamics. For N = 1, on the other hand, the covariance
matrix is nondiagonal and reads

M (p1001) = (20)

N =

2
0
1
0

— o N O
SN O =
N O = O

This gives rise to the steady-state two-atom density matrix

; 2y

0
2
12 1
0

1 0 0

0 1 0
Ps =210 1 2 0

0 0 7
which has positive partial transpose, as it is straightforward
to check, and thus describes a separable state. In Fig. 4(a) we
plot the time behavior towards steady state of the elements of
the two-atom density matrix. Interestingly enough, not only
is the two-atom state fully separable at all instants of time of
the dynamics, it is also very weakly quantum correlated, in
general. In order to support our claim, we have computed
the entropic version of quantum discord [41] proposed in
Ref. [42] to test for more general quantum correlations seeded
into the state of the two atoms. Quantum discord strives
at capturing quantum correlations of a broad nature in a
multipartite quantum system, witnessing the nonclassicality of
the way correlations are shared by the elements of (in general)
a many-party register. In our case, a nonzero value of quantum
discord in the bipartite atomic system at hand signals the
existence of quantum features in the density matrix describing
the state of atoms 1 and 2. The results are shown in Fig. 4(b),
where it is shown that a very small degree of discord is shared
by the atoms. The steady state, though, remains nonclassically
correlated, although separable.

(a) (b) (c)

/)12 D12 D12
1.0 0.05 0.06
0.8

(P12)00,00
0.6 0.03 0.04
04f \ (P12do1,01

(P12)o1,10 0.02

02/ N === 0.01

5304 0¢ o5 To T ! 07030808 To T2 T 0310 15 20 25 30

FIG. 4. (Color online) (a) Temporal behavior of the elements of the two-qubit density matrix for the case of an entangled single-photon
driving field (solid lines). The dashed lines are the corresponding steady-state values. We have used the notation (012); k1 = (ij|pi2s|kl). The
initial state of the atoms is taken to be |00),. (b) Quantum discord versus dimensionless interaction time y¢ for the case addressed in (a).
(c) Atomic steady-state discord against the amplitude o € R in an ECS driving the entanglement-transfer process. Dynamically, the two-atom
state is always separable with discord following a trend (at a set value of «) very similar to what is shown in (b) for an entangled single-photon

driving field.
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We now consider an ECS driving field [cf. Eq. (6)], whose covariance matrix is

a4+ (1+e )2+ 1) 0 e 0
0 e (1 —a?) +1 0 e
M _ A 22
(pECs) = N, g2 0 2+A+e 2+ 1) 0 22
0 o2 0 e (1l —a®)+1

While both steady-state and time-resolved density matrices
can be computed analytically using the formal apparatus
described above, their expressions in terms of the entries of the
covariance matrix in Eq. (22) are too lengthy to be reported
here. We can then check for inseparability of the two-atom
state, finding that, as in the entangled single-photon case, no
entanglement is set by the dynamics, regardless of the form
of the Rabi frequency €2(x,y), both dynamically and at the
steady state. As for the quantum discord, we have computed
it for the steady-state density matrix against the amplitude
o entering the driving field [see Fig. 4(c)]: the discord is
nonmonotonic against the ECS amplitude, showing that (very
modest) nonclassical correlations are set preferentially at small
values of o (the maximum of the discord being found for
a >~ 0.64). As « increases, the discord vanishes, thus giving
back a state with only classical correlations, at most. In fact, for
o > 1 the two-atom state is completely uncorrelated. Indeed,
the off-diagonal terms in the steady-state density matrix go
to zero as « increases, thus leaving a diagonal state with no
correlations at all (actually, the atomic state tends towards a
maximally mixed one).

The reason for the trends highlighted in this section is
very clearly related to the fact that the covariance matrix
of the field states driving the cavities fails to violate the
criterion of positivity of partial transposition. Needless to
say, as the field resources are non-Gaussian, this implies only
that correlations are encoded in higher-order moments of the
field’s quadratures, as mentioned above. The dissipation-led
entanglement-transfer process, though, strongly relies only on
the mentioned second moments: as far as the process at hand
is concerned, using the driving fields analyzed above is not
different from driving the cavities with separable Gaussian
states. This analysis suggests the pathway that should be
pursued, experimentally, when entangled single-photon and
ECSs are used as resources: an almost unitary process needs
to be in place, in order for the transfer process to actually
take place. In contrast, should the transit of the atom occur in
times comparable to the cavity lifetime (alternatively, should
the quality of the cavities be not high enough), the scheme

will fail, leaving, at its best, atomic states that are only weakly
quantum correlated.

V. CONCLUSIONS

We have investigated the entanglement transfer between
flying qubits and optical fields based on a cavity-QED system.
We have considered two typical quantum-correlated driving
fields, NOON and entangled coherent states, and found
that entangled atomic qubits can be prepared, effectively,
regardless of the details of their motion. We have discussed
diverse aspects of our system, including its robustness to the
effects of non-negligible cavity dissipation and sensitivity to
the value of the Rabi frequency, finding that the maximum
entanglement the qubits can achieve is not determined by
their motion but by the characteristics of the cavity fields,
which in turn depend on the external driving and cavity
damping rate. The high degree of robustness of the scheme (for
experimentally realistic parameters) allows consideration of
the consecutive passage of pairs of independent qubits through
the entangled cavities and the construction of a stream of
entangled qubits. The potential and limitations of such scheme
will be addressed elsewhere.
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